Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.451
Filtrar
1.
ACS Nano ; 18(12): 9019-9030, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483200

RESUMEN

Urinary tract infections (UTIs), common bacterial infections in communities and medical facilities, are mainly mediated by FimH. The glycan sites of the uromodulin protein play a crucial role in protecting against UTIs by interacting with FimH. A bioinspired approach using glycan-FimH interactions may effectively reduce bacteria through an antiadhesive mechanism, thereby curbing bacterial resistance. However, typical antiadhesive therapy alone fails to address the excessive reactive oxygen species and inflammatory response during UTIs. To bridge this gap, antioxidant nanozymes with antiadhesive ability were developed as nanodecoys to counter bacteria and inflammation. Specifically, ultrasmall dextran-coated ceria (DEC) was engineered to address UTIs, with dextran blocking FimH adhesion and ceria exhibiting anti-inflammatory properties. DECs, metabolizable by the kidneys, reduced bacterial content in the urinary tract, mitigating inflammation and tissue damage. In murine models, DECs successfully treated acute UTIs, repeated infections, and catheter-related UTIs. This dual approach not only highlights the potential of nanozymes for UTIs but also suggests applicability to other FimH-induced infections in the lungs and bowels, marking a significant advancement in nanozyme-based clinical approaches.


Asunto(s)
Adhesinas de Escherichia coli , Infecciones Urinarias , Ratones , Humanos , Animales , Adhesinas de Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Dextranos , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Inflamación , Antibacterianos
2.
Microbiol Spectr ; 12(4): e0415323, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364078

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) strains that produce various adhesins and one or two enterotoxins are the leading causes of children's diarrhea and travelers' diarrhea. MecVax, a multivalent ETEC vaccine candidate, consists of two proteins, an adhesin multiepitope fusion antigen (MEFA) that stimulates antibodies to the seven most important ETEC adhesins (CFA/I and CS1-CS6) and a toxoid fusion antigen which stimulates antibodies against ETEC enterotoxins (heat-labile toxin and heat-stable toxin). CFA MEFA-II, another polyvalent MEFA protein, has been demonstrated to stimulate antibodies to another five important ETEC adhesins (CS7, CS12, CS14, CS17, and CS21). We hypothesize that MecVax coverage and efficacy can be expanded if MecVax could stimulate antibodies to all 12 adhesins. In this study, we supplemented MecVax with CFA MEFA-II, examined broad immunity to the 12 targeted ETEC adhesins and 2 ETEC toxins (STa, LT) in mice, and assessed mouse antibody functions for inhibiting the adherence of the 12 adhesins and neutralizing the enterotoxicity of 2 toxins, thus assessing the potential application of a broadly protective pan-ETEC vaccine. Mice intramuscularly immunized with MecVax and CFA MEFA-II developed robust antibody responses to the 12 ETEC adhesins and 2 toxins; furthermore, mouse serum antibodies showed functional activities against the adherence from each of the targeted adhesins and the enterotoxicity of either toxin. Data also indicated that CFA MEFA-II was antigenically compatible with MecVax. These results demonstrated that the inclusion of CFA MEFA-II further expands MecVax broad immunogenicity and protection coverage, suggesting the feasibility of developing a vaccine against all important diarrheal ETEC strains.IMPORTANCEThere are no vaccines licensed for Enterotoxigenic Escherichia coli (ETEC), a leading cause of children's diarrhea and the most common cause of travelers' diarrhea. Since ETEC strains produce over 25 adhesins and 2 distinctive enterotoxins, heterogeneity is a key obstacle to vaccine development. MecVax, a multivalent ETEC vaccine candidate, induces protective antibodies against the seven most important adhesins (CFA/I and CS1-CS6) associated with two-thirds of ETEC clinical cases. However, ETEC prevalence shifts chronically and geographically, and other adhesins are also associated with clinical cases. MecVax would become a pan-ETEC vaccine if it also protects against the remaining important adhesins. This study demonstrated that MecVax supplemented with adhesin protein CFA MEFA-II induces functional antibodies against 12 important ETEC adhesins (CFA/I, CS1-CS7, CS12, CS14, CS17, and CS21), enabling the development of a more broadly protective ETEC vaccine and further validating the application of the MEFA vaccinology platform for multivalent vaccine development.


Asunto(s)
Toxinas Bacterianas , Escherichia coli Enterotoxigénica , Infecciones por Escherichia coli , Proteínas de Escherichia coli , Vacunas contra Escherichia coli , Niño , Animales , Ratones , Humanos , Toxinas Bacterianas/metabolismo , Escherichia coli Enterotoxigénica/metabolismo , Diarrea/prevención & control , Infecciones por Escherichia coli/prevención & control , Anticuerpos Antibacterianos , Viaje , Enterotoxinas , Vacunas contra Escherichia coli/metabolismo , Adhesinas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
3.
J Med Chem ; 67(5): 3668-3678, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38308631

RESUMEN

FmlH, a bacterial adhesin of uropathogenic Escherichia coli (UPEC), has been shown to provide a fitness advantage in colonizing the bladder during chronic urinary tract infections (UTIs). Previously reported ortho-biphenyl glycosides based on ßGal and ßGalNAc have excellent binding affinity to FmlH and potently block binding to its natural carbohydrate receptor, but they lack oral bioavailability. In this paper, we outline studies where we have optimized compounds for improved pharmacokinetics, leading to the discovery of novel analogues with good oral bioavailability. We synthesized galactosides with the anomeric O-linker replaced with more stable S- and C-linked linkers. We also investigated modifications to the GalNAc sugar and modifications to the biphenyl aglycone. We identified GalNAc 69 with an IC50 of 0.19 µM against FmlH and 53% oral bioavailability in mice. We also obtained a FimlH-bound X-ray structure of lead compound 69 (AM4085) which has potential as a new antivirulence therapeutic for UTIs.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Ratones , Animales , Lectinas , Adhesinas de Escherichia coli/química , Infecciones Urinarias/tratamiento farmacológico , Compuestos de Bifenilo/química , Escherichia coli Uropatógena/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico
4.
Biochem Biophys Res Commun ; 696: 149534, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241810

RESUMEN

Autotransporters constitute a large family of natural proteins that are essential for delivering many types of proteins and peptides across the outer membrane in Gram-negative bacteria. In biotechnology, autotransporters have been explored for display of recombinant proteins and peptides on the surface of Escherichia coli and have potential as tools for directed evolution of affinity proteins. Here, we investigate conditions for AIDA-I autotransporter-mediated display of recombinant proteins. A new expression vector was designed and engineered for this purpose, and a panel of proteins from different affinity-protein classes were subcloned to the vector, followed by evaluation of expression, surface display and functionality. Surface expression was explored in ten different E. coli strains together with assessment of transformation efficiencies. Furthermore, the most promising strain and expression vector combination was used in mock library selections for evaluation of magnetic-assisted cell sortings (MACS). The results demonstrated dramatically different performances depending on the type of affinity protein and choice of E. coli strain. The optimized MACS protocol showed efficient enrichment, and thus potential for the new AIDA-I display system to be used in methods for directed evolution of affinity proteins.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Adhesinas de Escherichia coli/química , Sistemas de Secreción Tipo V/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Péptidos/metabolismo
5.
Proteins ; 92(1): 117-133, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37700555

RESUMEN

The bacterial adhesin FimH is a model for the study of protein allostery because its structure has been resolved in multiple configurations, including the active and the inactive state. FimH consists of a pilin domain (PD) that anchors it to the rest of the fimbria and an allosterically regulated lectin domain (LD) that binds mannose on the surface of infected cells. Under normal conditions, the two domains are docked to each other and LD binds mannose weakly. However, in the presence of tensile force generated by shear the domains separate and conformational changes propagate across LD resulting in a stronger bond to mannose. Recently, the crystallographic structure of a variant of FimH has been resolved, called FimH FocH , where PD contains 10 mutations near the inter-domain interface. Although the X-ray structures of FimH and FimH FocH are almost identical, experimental evidence shows that FimH FocH is activated even in the absence of shear. Here, molecular dynamics simulations combined with the Jarzynski equality were used to investigate the discrepancy between the crystallographic structures and the functional assays. The results indicate that the free energy barrier of the unbinding process between LD and PD is drastically reduced in FimH FocH . Rupture of inter-domain hydrogen bonds involving R166 constitutes a rate limiting step of the domain separation process and occurs more readily in FimH FocH than FimH. In conclusion, the mutations in FimH FocH shift the equilibrium toward an equal occupancy of bound and unbound states for LD and PD by reducing a rate limiting step.


Asunto(s)
Manosa , Simulación de Dinámica Molecular , Manosa/química , Regulación Alostérica , Adhesinas de Escherichia coli/química , Escherichia coli/genética , Proteínas Fimbrias/química , Lectinas/metabolismo
6.
Indian J Med Microbiol ; 46: 100417, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37945109

RESUMEN

PURPOSE: To detect the presence of fimH and iss type 1, 2 and 3 genes in uropathogenic Escherichia coli (UPEC) isolates recovered from patients coming to the out patient department (OPD) of our hospital. METHODS: E. coli isolates recovered from patients who had symptoms of urinary tract infection (UTI) were processed for the presence of fimH and iss genes. DNA was extracted using an in house method after which conventional PCR using forward and reverse primers targeting the four genes was carried out. The amplified products were electrophoresed and visualized in a gel documentation imager. Relevant demographic details of the patients were recorded on a pre-designed pro-forma and antimicrobial susceptibility testing of the isolates was done by disc diffusion method. RESULTS: fimH was present in 87.5% of UPEC isolates whereas iss type 1 was seen in 7.3%, type 2 in 4.2% and iss type 3 in 71.9% isolates. Age of the patients ranged from 3 months to 82 â€‹yrs (mean 43.5 SD â€‹± â€‹18.20). UTI was more common in females (60.2%) as compared to males patients (39.8%). Dysuria (66.7%) was the most common symptom in the studied subjects and diabetes mellitus (42.6%) the most common co-morbidity. A total of 56.5% patients gave a history of prior antibiotic intake. The UPEC isolates were resistant to most of the antibiotics tested. However all the isolates were sensitive to polymyxin B and colistin. Fosfomycin resistance was seen in 9.5% of the UPEC isolates harbouring fimH gene. CONCLUSION: This is the first study that highlights the presence of iss type 3 gene in UPEC isolates along with the fimH and iss type 1 and 2 genes. The results of this study can serve as a stepping stone for future in depth research into the significance of the iss genes in causing UTI.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Masculino , Femenino , Humanos , Lactante , Escherichia coli Uropatógena/genética , Virulencia/genética , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones Urinarias/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , India , Factores de Virulencia/genética , Adhesinas de Escherichia coli/genética , Proteínas Fimbrias/genética
7.
Sci Adv ; 9(45): eadi9834, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37939183

RESUMEN

Urinary tract infection is among the most common infections worldwide, typically studied in animals and cell lines with limited uropathogenic strains. Here, we assessed diverse bacterial species in a human urothelial microtissue model exhibiting full stratification, differentiation, innate epithelial responses, and urine tolerance. Several uropathogens invaded intracellularly, but also commensal Escherichia coli, suggesting that invasion is a shared survival strategy, not solely a virulence hallmark. The E. coli adhesin FimH was required for intracellular bacterial community formation, but not for invasion. Other shared lifestyles included filamentation (Gram-negatives), chaining (Gram-positives), and hijacking of exfoliating cells, while biofilm-like aggregates were formed mainly with Pseudomonas and Proteus. Urothelial cells expelled invasive bacteria in Rab-/LC3-decorated structures, while highly cytotoxic/invasive uropathogens, but not commensals, disrupted host barrier function and strongly induced exfoliation and cytokine production. Overall, this work highlights diverse species-/strain-specific infection strategies and corresponding host responses in a human urothelial microenvironment, providing insights at the microtissue, cell, and molecular level.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Animales , Humanos , Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Adhesinas de Escherichia coli/metabolismo , Infecciones Urinarias/metabolismo
8.
BMC Vet Res ; 19(1): 187, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789311

RESUMEN

BACKGROUND: Avian Escherichia coli (E.coli) type 1 fimbriae adhere to avian tracheal epithelial cells through the FimH protein. However, the adhesion-related antigen is still unknown. The purpose of this study was to analyze the antigenicity of the type 1 fimbrial FimH protein of wild-type avian E. coli, screen antigen epitopes, and prepare monoclonal antibodies (mAbs) that can block the adhesion of avian E. coli. RESULTS: In this study, the nucleic acid homologies of MG2 (O11), TS12 (O18), and YR5 (O78) with K12 were 97.7%, 99.6%, and 97.7%, respectively, and the amino acid sequence similarity reached 98.7%, 99.3%, and 98.0%, respectively. The epitopes and hydrophilicities of the FimH proteins of these three strains were similar. The more obvious lectin domain epitopes were located at FimH protein positions 111-124 and 154-162. The mAbs 7C2 and 7D8 against these two epitopes were prepared. An adhesion inhibition test showed that 7C2 and 7D8 blocked bacterial adhesion to avian tracheal epithelial cells. The mAb 7C2 against the 111-124 epitope inhibited O78 strain adhesion by 93%, and the mAb 7D8 against the 154-162 epitope inhibited O78 strain adhesion by 49%, indicating that these two epitopes are closely related to the adhesion of type 1 fimbriae. However, only the 111-124 epitope-recognizing mAb 7C2 inhibited bacterial agglutination of erythrocytes, indicating that host cell receptor binding and erythrocyte agglutination are not mediated by the same spatial locations within the FimH protein. CONCLUSIONS: The results demonstrate that the mAbs 7C2 and 7D8 against FimH protein positions 111-124 and 154-162 could inhibit the adhesion of E.coli to the chicken trachea.


Asunto(s)
Escherichia coli , Proteínas Fimbrias , Animales , Escherichia coli/genética , Proteínas Fimbrias/genética , Epítopos/metabolismo , Adhesinas de Escherichia coli/genética , Adhesinas de Escherichia coli/química , Aglutininas/metabolismo , Adhesión Bacteriana
9.
Front Immunol ; 14: 1213467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720226

RESUMEN

Background: Macrophages are key effector cells of innate immunity and play a critical role in the immune balance of disease pathogenesis, especially in the tumor microenvironment. In previous studies, we showed that FimH, an Escherichia coli adhesion portion, promoted dendritic cell activation. However, the effect of FimH in macrophage polarization has yet to be fully examined. In this study, we investigated the potential effect of FimH on macrophages, as well as the polarization from M2 to M1 macrophages, contributing to the overall antitumor effect. Methods: Mouse bone marrow derived macrophages and peritoneal macrophages were generated to test the effect of FimH in vitro. The expression of costimulatory molecules and production of cytokines were analyzed. The effect of FimH in the tumor-associated macrophages was examine in the B16F10-tumor bearing C57BL/6. Results: FimH was found to promote M1 macrophage activation. In addition, FimH polarized M2 macrophages, which were induced by interleukin (IL)-4 and IL-13 into M1 macrophages were dependent on toll-like receptor 4 and myeloid differentiation factor 2. Moreover, FimH reprogramed the tumor-associated macrophage (TAM) into M1 macrophages in B16 melanoma tumor-bearing mice and promoted an inflammatory reaction in the tumor microenvironment (TME). Furthermore, FimH promoted M1 macrophage activation, as well as the reversion of M2 macrophages into M1 macrophages in humans. Finally, FimH treatment was found to enhance the anti-cancer immunity of anti-PD-L1 antibody by the induction of M1 polarization from TAM. Conclusion: This study demonstrated the potential effect of FimH on the activation of macrophages, responsible for the repolarization of M2 macrophages into the M1 phenotype via the TLR4 signaling pathway. Moreover, FimH could also reprogram TAM polarization to the M1 status in the TME, as well as enhance the anti-tumor activity of immune checkpoint blockade.


Asunto(s)
Adhesinas de Escherichia coli , Receptor Toll-Like 4 , Microambiente Tumoral , Animales , Humanos , Ratones , Escherichia coli , Macrófagos , Ratones Endogámicos C57BL
10.
Ther Innov Regul Sci ; 57(6): 1153-1166, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37578736

RESUMEN

The nature of alpha-D-mannose-natural aldohexose sugar, C-2 glucose epimer, whose intended use is for preventing urinary tract infections-in the interaction with E. coli is addressed in order to drive the issue of its regulatory classification as a medicinal product or medical device. PRISMA systematic review approach was applied; Delphi Panel method was used to target consensus on statements retrieved from evidence. Based on regulatory definitions and research evidence, the mechanism of D-mannose does not involve a metabolic or immunological action while there is uncertainty regarding the pharmacological action. Specific interaction between the product and the bacteria within the body occurs, but its nature is inert: it does not induce a direct response activating or inhibiting body processes. Moreover, the action of D-mannose takes place, even if inside the bladder, outside the epithelium on bacteria that have not yet invaded the urothelial tissue. Therefore, its mechanism of action is not directed to host structures but to structures (bacteria) external to the host's tissues. On the basis of current regulation, the uncertainty as regard a pharmacological action of alpha-D-mannose makes possible its medical device classification: new regulations and legal judgments can add further considerations. From a pharmacological perspective, research is driven versus synthetic mannosides: no further considerations are expected on alpha-D-mannose.


Asunto(s)
Escherichia coli , Manosa , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Consenso , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Manosa/química , Manosa/metabolismo , Revisiones Sistemáticas como Asunto
11.
Future Microbiol ; 18: 489-503, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37288968

RESUMEN

Background: In this study, uropathogenic Escherichia coli (UPEC) from pregnant and nonpregnant patients were characterized with respect to antimicrobial resistance (AMR) and expression of their virulence factors and cytokines elicited upon infection in urothelial (HTB-4) cells in vitro to frame proper therapeutics. Methods: Antibiotic sensitivity and adherence to HTB-4 cells were tested and PCR and real-time PCR were performed. Results: UPEC from nonpregnant patients showed the most resistance with a significant correlation between the expression of hlyA and TGF-ß and papC and GCSF. The expression of fimH and IFN-γ, fimH and IL-1ß, and fimH and IL-17A, respectively, were significantly correlated in UPEC from pregnant patients. Conclusion: Cytokine expression profiles were correlated with the expression of virulence genes in UPEC that was isolated from different populations, and should be accounted for along with AMR analysis.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Infecciones Urinarias/tratamiento farmacológico , Escherichia coli Uropatógena/genética , Antibacterianos/uso terapéutico , Factores de Virulencia/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Infecciones por Escherichia coli/tratamiento farmacológico , Adhesinas de Escherichia coli/genética , Proteínas Fimbrias/genética
12.
Biophys J ; 122(13): 2744-2756, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37264571

RESUMEN

The bacterial fimbrial adhesin FimH is a remarkable and well-studied catch-bond protein found at the tip of E. coli type 1 pili, which allows pathogenic strains involved in urinary tract infections to bind high-mannose glycans exposed on human epithelia. The catch-bond behavior of FimH, where the strength of the interaction increases when a force is applied to separate the two partners, enables the bacteria to resist clearance when they are subjected to shear forces induced by urine flow. Two decades of experimental studies performed at the single-molecule level, as well as x-ray crystallography and modeling studies, have led to a consensus picture whereby force separates the binding domain from an inhibitor domain, effectively triggering an allosteric conformational change in the former. This force-induced allostery is thought to be responsible for an increased binding affinity at the core of the catch-bond mechanism. However, some important questions remain, the most challenging one being that the crystal structures corresponding to these two allosteric states show almost superimposable binding site geometries, which questions the molecular origin for the large difference in affinity. Using molecular dynamics with a combination of enhanced-sampling techniques, we demonstrate that the static picture provided by the crystal structures conceals a variety of binding site conformations that have a key impact on the apparent affinity. Crucially, the respective populations in each of these conformations are very different between the two allosteric states of the binding domain, which can then be related to experimental affinity measurements. We also evidence a previously unappreciated but important effect: in addition to the well-established role of the force as an allosteric regulator via domain separation, application of force tends to directly favor the high-affinity binding site conformations. We hypothesize that this additional "local" catch-bond effect could delay unbinding between the bacteria and the host cell before the "global" allosteric transition occurs, as well as stabilizing the complex even more once in the high-affinity allosteric state.


Asunto(s)
Escherichia coli , Proteínas Fimbrias , Humanos , Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Adhesión Bacteriana/fisiología , Sitios de Unión , Unión Proteica
13.
Future Microbiol ; 18: 481-488, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37256324

RESUMEN

Background: The dissemination of polymyxin resistance represents a significant threat to public health. Materials & methods: Sequence-based typing was performed by 53 mcr-1 Escherichia coli isolates using fumC/fimH (CH) genes to characterize clones spreading from pig farming. Furthermore, 12 isolates had their whole genome sequenced for phylogenetic study. Results: The isolates were classified into 22 distinct CH types, and two novel CH types (CH41-1578 and CH4-1579) and one sequence type (ST12652) was also described. According to phylogenetic study, both multilocus sequence typing and CH methods grouped the isolates similarly. Conclusion: Our findings suggest that the dissemination of the mcr-1 gene in pig farming has occurred mainly by horizontal gene transfer, and CH typing proved to be a good tool to characterize E. coli clones.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Porcinos , Escherichia coli , Granjas , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/genética , Alelos , Filogenia , Proteínas de Escherichia coli/genética , Tipificación de Secuencias Multilocus , Antibacterianos/farmacología , Colistina/farmacología , Pruebas de Sensibilidad Microbiana , Adhesinas de Escherichia coli/genética , Proteínas Fimbrias/genética
14.
Bioorg Chem ; 138: 106613, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37224739

RESUMEN

We report the synthesis and biological characterization of a novel class of multivalent glycoconjugates as hit compounds for the design of new antiadhesive therapies against urogenital tract infections (UTIs) caused by uropathogenic E. coli strains (UPEC). The first step of UTIs is the molecular recognition of high mannose N-glycan expressed on the surface of urothelial cells by the bacterial lectin FimH, allowing the pathogen adhesion required for mammalian cell invasion. The inhibition of FimH-mediated interactions is thus a validated strategy for the treatment of UTIs. To this purpose, we designed and synthesized d-mannose multivalent dendrons supported on a calixarene core introducing a significant structural change from a previously described family of dendrimers bearing the same dendrons units on a flexible pentaerythritol scaffold core. The new molecular architecture increased the inhibitory potency against FimH-mediated adhesion processes by about 16 times, as assessed by yeast agglutination assay. Moreover, the direct molecular interaction of the new compounds with FimH protein was assessed by on-cell NMR experiments acquired in the presence of UPEC cells.


Asunto(s)
Dendrímeros , Escherichia coli , Animales , Ligandos , Escherichia coli/metabolismo , Dendrímeros/farmacología , Proteínas Fimbrias/metabolismo , Adhesinas de Escherichia coli/metabolismo , Manosa/farmacología , Manosa/química , Mamíferos/metabolismo
15.
Microbiol Spectr ; 11(3): e0069023, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37039668

RESUMEN

Bacteria can rapidly tune their physiology and metabolism to adapt to environmental fluctuations. In particular, they can adapt their lifestyle to the close proximity of other bacteria or the presence of different surfaces. However, whether these interactions trigger transcriptomic responses is poorly understood. We used a specific setup of E. coli strains expressing native or synthetic adhesins mediating bacterial aggregation to study the transcriptomic changes of aggregated compared to nonaggregated bacteria. Our results show that, following aggregation, bacteria exhibit a core response independent of the adhesin type, with differential expression of 56.9% of the coding genome, including genes involved in stress response and anaerobic lifestyle. Moreover, when aggregates were formed via a naturally expressed E. coli adhesin (antigen 43), the transcriptomic response of the bacteria was more exaggerated than that of aggregates formed via a synthetic adhesin. This suggests that the response to aggregation induced by native E. coli adhesins could have been finely tuned during bacterial evolution. Our study therefore provides insights into the effect of self-interaction in bacteria and allows a better understanding of why bacterial aggregates exhibit increased stress tolerance. IMPORTANCE The formation of bacterial aggregates has an important role in both clinical and ecological contexts. Although these structures have been previously shown to be more resistant to stressful conditions, the genetic basis of this stress tolerance associated with the aggregate lifestyle is poorly understood. Surface sensing mediated by different adhesins can result in various changes in bacterial physiology. However, whether adhesin-adhesin interactions, as well as the type of adhesin mediating aggregation, affect bacterial cell physiology is unknown. By sequencing the transcriptomes of aggregated and nonaggregated cells expressing native or synthetic adhesins, we characterized the effects of aggregation and adhesin type on E. coli physiology.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli/genética , Adhesión Bacteriana/genética , Adhesinas Bacterianas/genética , Adhesinas de Escherichia coli/genética , Proteínas de Escherichia coli/genética , Infecciones por Escherichia coli/microbiología
16.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36982580

RESUMEN

Antigen 43 (Ag43) expression induces aggregation and biofilm formation that has consequences for bacterial colonisation and infection. Ag43 is secreted through the Type 5 subtype "a" secretion system (T5aSS) and is a prototypical member of the family of self-associating autotransporters (SAATs). As a T5aSS protein, Ag43 has a modular architecture comprised of (i) a signal peptide, (ii) a passenger domain that can be subdivided into three subdomains (SL, EJ, and BL), (iii) an autochaperone (AC) domain, and (iv) an outer membrane translocator. The cell-surface SL subdomain is directly involved in the "Velcro-handshake" mechanism resulting in bacterial autoaggregation. Ag43 is considered to have a ubiquitous distribution in E. coli genomes and many strains harbour multiple agn43 genes. However, recent phylogenetic analyses indicated the existence of four distinct Ag43 classes exhibiting different propensities for autoaggregation and interactions. Given the knowledge of the diversity and distribution of Ag43 in E. coli genomes is incomplete, we have performed a thorough in silico investigation across bacterial genomes. Our comprehensive analyses indicate that Ag43 passenger domains cluster in six phylogenetic classes associated with different SL subdomains. The diversity of Ag43 passenger domains is a result of the association of the SL subtypes with two different EJ-BL-AC modules. We reveal that agn43 is almost exclusively present among bacterial species of the Enterobacteriaceae family and essentially in the Escherichia genus (99.6%) but that it is not ubiquitous in E. coli. The gene is typically present as a single copy but up to five copies of agn43 with different combinations of classes can be observed. The presence of agn43 as well as its different classes appeared to differ between Escherichia phylogroups. Strikingly, agn43 is present in 90% of E. coli from E phylogroup. Our results shed light on Ag43 diversity and provide a rational framework for investigating its role in E. coli ecophysiology and physiopathology.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/fisiología , Proteínas de Escherichia coli/metabolismo , Adhesinas de Escherichia coli/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Filogenia , Prevalencia
17.
J Appl Genet ; 64(2): 367-373, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36976452

RESUMEN

Escherichia coli sequence type 131 (ST131) is a multidrug-resistant strain with the global dissemination. Biofilm formation-related factors include the most important virulence factors in extra-intestinal pathogenic E. coli (ExPEC) ST131 strains causing infections with treatment-limited subjects. This study aims to investigate the biofilm formation ability and its correlation with the presence of fimH, afa, and kpsMSTII genes in clinical isolates of ExPEC ST131. In this regard, the prevalence and characteristics of these strains collected and evaluated. The results revealed strong, moderate, and weak attachment abilities related to biofilm formation attributes in 45%, 20%, and 35% of strains, respectively. In the meantime, the frequency of the fimH, afa, and kpsMSTII genes among the isolates was observed as follows: fimH positive: 65%; afa positive: 55%; and kpsMSTII positive: 85%. The results convey a significant different of biofilm formation ability between clinical E. coli ST131 and non-ST131 isolates. Furthermore, while 45% of ST131 isolates produced strong biofilms, only 2% of non-ST131 isolates showed the ability to form strong biofilms. The attending of fimH, afa, and kpsMSTII genes in the majority of ST131 strains demonstrated a key role leading to biofilm formation. These findings suggested the application of fimH, afa, and kpsMSTII gene suppressors for treating biofilm infections caused by drug-resistant ST131 strains.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , Factores de Virulencia/genética , Biopelículas , Antibacterianos , Adhesinas de Escherichia coli/genética , Proteínas Fimbrias/genética , Proteínas Fimbrias/uso terapéutico
18.
J Biol Chem ; 299(5): 104627, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36944399

RESUMEN

The FimH type-1 fimbrial adhesin allows pathogenic Escherichia coli to adhere to glycoproteins in the epithelial linings of human bladder and intestinal tract, by using multiple fimbriae simultaneously. Pauci- and high-mannose type N-glycans are natural FimH receptors on those glycoproteins. Oligomannose-3 and oligomannose-5 bind with the highest affinity to FimH by using the same Manα1,3Man branch. Oligomannose-6 is generated from oligomannose-5 in the next step of the biogenesis of high-mannose N-glycans, by the transfer of a mannose in α1,2-linkage onto this branch. Using serial crystallography and by measuring the kinetics of binding, we demonstrate that shielding the high-affinity epitope drives the binding of multiple FimH molecules. First, we profiled FimH glycan binding on a microarray containing paucimannosidic N-glycans and in a FimH LEctPROFILE assay. To make the transition to oligomannose-6, we measured the kinetics of FimH binding using paucimannosidic N-glycans, glycoproteins and all four α-dimannosides conjugated to bovine serum albumin. Equimolar mixed interfaces of the dimannosides present in oligomannose-6 and molecular dynamics simulations suggest a positive cooperativity in the bivalent binding of Manα1,3Manα1 and Manα1,6Manα1 dimannosides. The binding of core α1,6-fucosylated oligomannose-3 in cocrystals of FimH is monovalent but interestingly the GlcNAc1-Fuc moiety retains highly flexibility. In cocrystals with oligomannose-6, two FimH bacterial adhesins bind the Manα1,3Manα1 and Manα1,6Manα1 endings of the second trimannose core (A-4'-B). This cooperative switch towards bivalent binding appears sustainable beyond a molar excess of oligomannose-6. Our findings provide important novel structural insights for the design of multivalent FimH antagonists that bind with positive cooperativity.


Asunto(s)
Adhesinas de Escherichia coli , Receptor de Manosa , Modelos Moleculares , Humanos , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Adhesión Bacteriana , Escherichia coli/metabolismo , Glicoproteínas/metabolismo , Manosa/metabolismo , Receptor de Manosa/química , Receptor de Manosa/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Simulación del Acoplamiento Molecular
19.
Microb Pathog ; 174: 105920, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36460143

RESUMEN

Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) are among the most prevalent bacterial infections in humans. Antibiotic resistance among UPEC isolates is increasing, and designing an effective vaccine can prevent or reduce these infections. FimH adhesin, iron scavenger receptor FyuA, and cytotoxic necrotizing factor -1 (CNF-1) are among the most important virulence factors of UPEC strains. Thus, a novel multi-epitope protein composed of FimH, FyuA, and CNF-1 was designed to evaluate its biological activity and immunogenicity in vitro and in vivo, respectively. The final vaccine design had seven domains, including the N-terminal domain of FimH, four domains of FyuA, and two domains of CNF-1, as determined by immunoinformatics analysis. The results of tertiary structure prediction showed that the chimeric protein had a C-score of -0.25 and Z-score of -1.94. Molecular docking indicated that thirty six ligand residues of the chimeric protein interacted with 53 receptor residues of TLR-4 by hydrogen bonds and hydrophobic interactions. Analysis of protein expression by SDS-PAGE showed an approximately 44 kDa band with different concentrations of IPTG which were confirmed by Western blot. According to ELISA results, the level of IL-8 produced by stimulated Ht29 cells with the chimeric protein was significantly higher than the stimulated Ht29 cells with CNF-1 alone and un-stimulated Ht29 cells. Rabbits subcutaneously immunized with the chimeric protein admixed with Freund adjuvant induced higher level of serum IgG on day 14 after the first vaccination than control rabbits. Furthermore, the booster dose of the chimeric protein significantly enhanced the IgG levels as compared to day 14 and also controls. As, the chimeric protein has suitable B-cell epitopes and MHC-I and MHC-II binding epitopes to stimulate humoral and cellular immunity, it could be a promising vaccine candidate against UTIs caused by UPEC. Evaluating the multi-epitope protein in inducing humoral and cellular immune responses, as well as protection, is ongoing in the mice models.


Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Conejos , Animales , Ratones , Adhesinas de Escherichia coli/genética , Escherichia coli Uropatógena/genética , Simulación del Acoplamiento Molecular , Infecciones Urinarias/microbiología , Inmunoglobulina G , Proteínas Recombinantes de Fusión/genética , Infecciones por Escherichia coli/microbiología , Factores de Virulencia/genética , Proteínas Fimbrias
20.
J Biomol Struct Dyn ; 41(9): 3914-3925, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35403563

RESUMEN

The increase in multidrug-resistant pathogens in urinary tract infections (UTIs) among communities and hospitals threatens our ability to treat these common pathogens. Uropathogenic Escherichia coli (UPEC) strains are the most frequent uropathies linked to the development of UTIs. This work aims to introduce bioactive natural products via virtual screening of small molecules from a public database to prevent biofilm formation by inhibiting FimH, a type 1 fimbriae that plays a crucial role in UPEC pathogenicity. A total of 30926 small molecules from the NPASS database were subjected to screening via molecular docking. Followed by performing in silico ADME studies, seven molecules showed promising docking results ranging from -6.8 to -8.7 kcal/mol. As a result of the docking score findings, 100 ns Molecular dynamics (MD) simulations were performed. Based on MM-PBSA analysis, NPC313334 ligand showed high binding affinity -42 and stability with the binding pocket of FimH protein during molecular dynamic simulations. DFT calculations were also performed on the ligands to calculate the HOMO-LUMO energies of the compounds in order to an idea about their structure and reactivity. This research suggests that NPC313334 may be a possible antibacterial drug candidate that targets FimH to reduce the number of UPEC-related urinary tract infections.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Adhesinas de Escherichia coli , Infecciones Urinarias , Humanos , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/uso terapéutico , Simulación del Acoplamiento Molecular , Lectinas , Antibacterianos/farmacología , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología , Infecciones Urinarias/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...